
1 

    ISSN 2756-9160 / November 2020. 

      International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings 

Haar Classifier Based Face Recognition and Tracking 

in a Video Stream using Real Time Computer Vision 

with OpenCV

Samudith Nanayakkara 

Information Technology 

General Sir John Kothelawala Defence University 

Colombo, Sri Lanka 

samudithnanayakkara97@gmail.com 

Ashen Wanniarachchi 

Information Technology 

General Sir John Kothelawala Defence University 

Colombo, Sri Lanka 

ashenw@kdu.ac.lk

Abstract—In the past few decades, the interest on computer 

vision has increased drastically with the development and 

popularity of machine learning and deep learning concepts. 

Human face recognition and detection from an image or a video 

stream source is a popular research topic in the field of 

biometrics. Face detection and recognition technology have 

captured a greater attention due to the successful 

implementation in various applications and real-world 

consumer related market products. With the development in 

technology and hardware capabilities, face 

detection/recognition and emotional recognition has become a 

popular research area related to computer vision and algorithm-

based image analysis. The paper further emphasizes a real-

world implementation using a program which is developed using 

various libraries of Open CV, Matplotlib and Python 

framework along with video stream using a High Definition 

input source. A critical analysis is provided on Haar-Classifier 

which is an algorithm used in OpenCV for face detection and 

tracking purposes. 

Keywords— face detection, Haar-Classifier, OpenCV 

I. INTRODUCTION 

Machine learning builds under the background of 

Artificial intelligence that could transform information to 

knowledge. In the past few years people used to explore more 

and more data, but it would be useless if it cannot be analysed 

and find the pattern hidden in it. Machine Learning (ML) 

techniques has the potential to figure out the underlying 

pattern in a large/complex dataset which would be extremely 

difficult to discover by humans. Once the hidden pattern is 

identified and with knowledge on specific problem, 

predictions could be provided on events in the future that 

might be helpful in future decision making. [1] 

Computer vision is a rapidly evolving research area 

devoted to modifying, analysing and in-depth high-level 

understanding of individual or series of vector and raster 

images. Computer vision is mainly intended to determine the 

feed from an external image or video source and use that 

understanding to manipulate and create a response on a 

programme or trigger an event.[2] Computer vision 

technology are used in many different applications in the 

current world such as on biometrics, surveillance systems, 

augmented reality, user authentication systems and many 

more. The main goal of the paper is to emphasize the 

implementation of face detection and recognition using 

OpenCV libraries with the aid of a visual stream input from a 

web camera or any other input source. Once the program is 

initiated based on the input stream the algorithm will search, 

detect, and recognize any human face/group of faces based on 

various facial features on a face of a typical human being.[3] 

II. CHALLENGES AND COMPUTER VISION APPLICATION

Computer vision is highly computational oriented, since 

most computer vision application must be executed in real 

time, it requires lot of computational and processing power. 

At minimum level, a single frame should be processed and 

completed within 35-45 milliseconds. Modern photography 

is embedded with computer vision by which cameras are 

capable of automatically detect and focus a person face and 

automatically trigger the shutter when a person smile. With 

rapid revolution in the camera technology, modern 

photography cameras, CCTV cameras and smart phone 

cameras are embedded with powerful lens, aperture, shutter 

capacity and low light sensors. These developments have 

improved the computing power on image processing which 

ultimately increases the demand on computer vision 

applications. Optical Character Recognition uses computer 

vision technology to identify the text and characters from a 

scanned document and which they can read them aloud using 

an audio synthesizer. Modern automobile industry uses 

computer vision to maintain the vehicle in the road lanes 

which is used with cruise control system, here the driver can 

allow the vehicle to travel with in a specific lane. Robotics at 

the manufacturing industry depends on computer vision to 

map real world objects and its parameters when performing 

specified tasks accordingly. [4] 

III. OPEN CV

OpenCV (Open Source Computer Vision Library) is a 

computer vision library available on open source platform.[5] 

This is developed using C language and could be 

implemented on any kernel platform. Open CV is developed 

by Intel Corporation. The libraries are mainly developed to be 

used in real time processing of images. Originally the 

OpenCV libraries are developed using C which makes it 

portable to some platforms. OpenCV can be implemented 

using many different languages such as python, Java etc. 

With the introduction of OpenCV 2.0 a new C++ interface is 

embedded with the traditional C interface. With the 

introduction of new version and new interface, vision 

functionalities could be implemented in an application with 



2 

                         ISSN 2756-9160 / November 2020. 

      International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings 

few numbers of code lines and reduces the programming 

errors such as memory leaks.[6] 

IV. LITERATURE REVIEW 

A. Face Detection Classifiers in OpenCV 

Various algorithms or classifiers are used to perform the 

face detection in OpenCV. The algorithms/classifiers are used 

to determine whether the input stream consist of -face 

(Positive)/Consist of a face or face (Negative)/Does not 

contain face. OpenCV consist of two pretrained classifiers 

which could be used in face detection and recognition 

applications.[7] The two type of classifiers are- 

• Haar Classifier 

• LBP Classifier or Local Binary Pattern 

On 2002 with the paper titled “Multiresolution Grayscale 

and Rotation Invariant Texture Classification with Local 

Binary Patterns” Local Binary Pattern (LBPs) was re-

introduce and populated.[8] Just like Haar classifier, LBP 

classifier is trained using several images. Human face 

consists of micro visual patterns where LCP visual descriptor 

features used feature vectors, which recognize a human face 

from a non-face object.[9] Since the current facial detection 

and recognition application is developed using Open CV Haar 

Classifier, it further elaborates the algorithm using the Haar 

feature based cascade classifier. 

B. Haar feature based cascade Classifier 

Haar name originated from the Haar wavelets which is 

used by earlier real time face detectors. Haar-feature classifier 

is based on the Haar wavelets which was first used by Paul 

Viola and Michael Jones in their paper titled "Rapid Object 

Detection using a Boosted Cascade of Simple Features". The 

classifier was mainly used in computer vision applications 

such as for face detection.[10]  

Haar classifier utilizes a machine learning approach for 

object detection in visual input streams and which can 

perform image processing at high speeds with higher 

detection rates. A large amount of positive and negative 

datasets of images are used to train the classifier. Positive 

images are datasets of images which the classifier needs to 

detect. While the Negative images are datasets of various 

other images of objects which the classifier does not want to 

detect.[10] 

This can be attributed to three main reasons: 

Haar classifier uses “Integral Image” concept to quickly 

compute the features detected by the detector. This concept 

reduces the image processing time which is important in 

computer vision related applications. 

The Algorithm used in learning is based on “AdaBoost”, 

this selects limited number of most important features from a 

large data set and provides the most efficient classifier. 

Many more classifiers are combined to create a “cascade” 

to avoid the focus on non-face regions in a video 

stream/image, where more computation is focus or spent on 

object like regions or areas.  

C. Methodology of the Haar feature based cascade 

Classifier 

1) Haar Classifier features extraction 

A large amount of training data as video stream or images 

are fed to the algorithm. Then the classifier begins to extract 

the Haar related features from each and every fed image or 

inputted video stream. After words Haar features are used to 

primary detect whether a relevant feature is present in the 

input video feed or the image. Haar features are similar to 

square shaped windows which are placed on images or run 

across the video stream to compute a feature. The feature is a 

single value obtained by subtracting the total pixels under the 

white area and that under the black area.[11] 

2) Integral Images algorithm 

The Integral Images algorithm was introduced by Viola 

Jones. The algorithm uses a “24x24” base rectangle shaped 

window, which can calculate over 180,000 features. This 

algorithm uses the values of four corners of the rectangle to 

calculate the total number of pixels under it.[10] 

3) AdaBoost 

As elaborated above, even though by 24x24 window more 

than 180,000 values of features could be resulted, all the 

features might not be helpful on detecting a human 

face.(Goyal et al., 2017) To determine the best feature out of 

the bulk, the Ada boost algorithm would be used. AdaBoost 

algorithm is used to filter the features which are helpful to 

increase the accuracy of the classifier. After the filtering 

process the number of features would gradually drop from 

180,000 to 6000.[10] 

4) Cascade of Classifiers 

Cascade of Classifiers is another way proposed by Viola 

Jones, that would contribute the algorithm to process faster. 

Cascade Classifier consist of various stages where at each 

stage it consists of a strong classifier. A major benefit of the 

cascade classifier is it eliminates the requirement of applying 

all the features at once in a window. Separate sub window 

groups of features are created, and at each stage classifier 

determines whether sub window detect a face or not. In the 

absence of a face the sub window is discarded with the 

respective features of the window. If the classifier is passed 

by the sub-window, then at the next stage the second stage of 

features are applied.[10] 

V. TECHNOLOGIES UTILIZED 

The program is developed using the Python programming 

language along with Matplotlib 2.0 and OpenCV 3.2.0 

dependencies. The program is developed and run using 

Python 3.6.8 64bit version. Since this version is more stable 

when executing OpenCV projects. The cascade files of Haar 

algorithm could be downloaded from OpenCV GitHub page. 

The video stream is sourced to the program using HP True 

Vision HD inbuild Web camera.[12]  



3 

                         ISSN 2756-9160 / November 2020. 

      International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings 

VI. IMPLEMENTATION 

The program is mainly developed using the Haar Classifier 

function which is capable of analysing and detecting human 

face or group of faces using the HD video stream input from 

the laptop web camera. After successfully detecting the 

face/group of faces, program outputs a green colour square 

around the face/ group of faces by tracking the position of the 

face in the video stream.[10] Initially after installing the 

OpenCV 3.2.0, Python v3.6.8 and Matplotlib 2.0, the required 

libraries/dependencies should be imported and added to the 

program module. [13] The list of required imports is as 

follow- import numpy as np ,import cv2, import 

matplotlib.pyplot as plt, %matplotlib inline 

The program should be fed with a video source to analyse 

and perform the face detection. The following code is used to 

load the live video stream from the web camera of the laptop 

to the program-camera=cv2.VideoCapture(0). After 

adding the input source, the Haar Cascade files should be 

imported. OpenCV contains number of pre trained classifiers 

for various instances. Some of the classifiers could be used to 

detect the eyes, face, object etc. OpenCV classifier file is an 

XML file. The xml files are added to the root of the project 

directory. The classifier xml file is as follow-

clsfr=cv2.CascadeClassifier('haarcascade_frontalface_de

fault.xml') 

The detection algorithm only works with grayscale colour 

scheme. The following line of code is added to transform the 

colour images/video stream to grayscale. 

gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

To implement the Face detection, in the classifier a 

module name “detectMultiscale” must be added to the code. 

When the above module is added the function will return a 

square with coordinates(x,y,w,h) around the face detected. 

With the function three important parameters are passed 

based on the data. The three parameters passed are image or 

input video source of type CV_8U, “scaleFactor” and 

“minNeighobors”. “ScaleFactor” is passed to determine the 

amount of reduction or compression in input image or video 

source under each scale.“minNeighbors” parameter is passed 

to specify the amount of neighbors each and every candidate 

rectangle should have to retain  and depict the face. The 

quality of the faces detected will be affected with this 

parameter. The following line of code is added to implement 

the above functionality-faces=clsfr.detectMultiScale(gray) 

An infinite loop is added to the code since the input stream 

is sourced from the web camera which is a video stream. The 

loop runs over all the coordinates returned and these 

coordinates are represented using a square in OpenCV. A 

green square will be drawn around the face if detected with a 

width of 2CM. The code used to add the loop and green 

rectangle functionality to the program-for (x,y,w,h) in faces: 

cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) 

With the green square representation, a text called “Face” 

will be outputted in HERSHEY font type. The following line 

of code is used to add this functionality to the program.  

cv2.putText(img,'FACE',(x,y-

10),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2) 

Finally, in order to determine whether face/group of faces 

has been correctly detected, the original inputted video stream 

is outputted in colour format. The following line of code is 

used to add this functionality to the program-

cv2.imshow('LIVE',img) 
 

VII. RESULT AND DISCUSSION 

 

 

 

 

 

The final outcomes of the programme are referred using 

the Fig 1. These HD video frames are sourced from a web 

camera. Occasionally face detection algorithm would detect 

another face within the face detection rectangle, although 

there is only one face physically existed. In the said cases post 

image processing is used to derive the coordinates of the exact 

face using OpenCV Haar Classifier. When system falsely 

output more than 1 square to a face, distance of centre points 

of the square is been calculated. If the calculated distance is 

smaller than the pre-set threshold, Then the final position of 

the detected face will be determined by calculating the 

average of these squares. Although the currently implemented 

method is successful, various bugs and limitations have been 

identified when testing the face detection algorithm due to the 

performance limitation in Python language. After evaluating 

the program based on factors such as Individual face/group of 

faces detection capability, Detection speed, Efficiency of 

detecting under various lighting conditions, CPU and 

resource utilization while the program is running, the face 

detection algorithm proposed by Viola and Jones is more 

suitable when implementing real time face 

recognition/detection. 

VIII. CONCLUSION 

Face detection/tracking and recognition is important on 

building commercial and industrial applications. The paper 

presents an in-depth explanation of Haar Classifier algorithm 

implemented using OpenCV libraries. Various face 

recognitions algorithms could be utilized based on various 

demands and factors affecting to the application. Advantages 

of implementing face detection using Haar classifier features 

over other features are high calculation speed. Accuracy and 

speed are the features which determine the success of a face 

detection algorithm. To provide a better face detection and 

recognition, the program will be further enhanced in the 

future to implement the solution in a practical real-world 

application using Internet of Things. 

REFERENCES 

[1]  Machine Learning—Fundamentals. Basic theory underlying    the 
field of… | by Javaid Nabi | Towards Data Science. (n.d.). Retrieved 

Fig. 1. Output of the program after a successful face detection 



4 

                         ISSN 2756-9160 / November 2020. 

      International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings 

July 29, 2020, from https://towardsdatascience.com/machine-
learning-basics-part-1-a36d38c7916 

[2]  Emami, S., & Suciu, V. P. (2012). Facial Recognition using OpenCV. 
Journal of Mobile, Embedded and Distributed Systems, 4(1), 38–43. 

[3]  Pulli, B. K., & Baksheev, A. (2012). OpenCV_CACM_p61-pulli. 61–
69. 

[4]  Computer Vision Applications in 10 Industries—Algorithm-X Lab. 

(n.d.). Retrieved July 29, 2020, from 
https://algorithmxlab.com/blog/computer-vision/ 

[5]  About. (n.d.). Retrieved July 29, 2020, from https://opencv.org/about/ 

[6]  OpenCV. (n.d.). Retrieved July 29, 2020, from https://opencv.org/ 

[7]  Python | Haar Cascades for Object Detection—GeeksforGeeks. (n.d.). 

Retrieved July 29, 2020, from 
https://www.geeksforgeeks.org/python-haar-cascades-for-object-
detection/ 

[8]  Face detection using OpenCV and Python: A beginner’s guide—

Blogs SuperDataScience—Big Data | Analytics Careers | Mentors | 

Success. (n.d.). Retrieved July 28, 2020, from 
https://www.superdatascience.com/blogs/opencv-face-detection 

[9]  Local Binary Patterns with Python & OpenCV - PyImageSearch. 
(n.d.). Retrieved July 29, 2020, from 

https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-
with-python-opencv/ 

[10]  Face Detection with Python using OpenCV - DataCamp. (n.d.). 

Retrieved July 29, 2020, from 
https://www.datacamp.com/community/tutorials/face-detection-
python-opencv 

[11]  Goyal, K., Agarwal, K., & Kumar, R. (2017). Face detection and 
tracking: Using OpenCV. Proceedings of the International 

Conference on Electronics, Communication and Aerospace 

Technology, ICECA 2017, 2017-Janua(4), 474–478. 
https://doi.org/10.1109/ICECA.2017.8203730 

[12]  Review #1308 about “HP Truevision HD” | Webcam Reviews | 
Webcam Test. (n.d.). Retrieved July 29, 2020, from 
https://webcamtests.com/reviews/1308 

[13]  Face Detection in 2 Minutes using OpenCV & Python | by Adarsh 
Menon | Towards Data Science. (n.d.). Retrieved July 29, 2020, from 

https://towardsdatascience.com/face-detection-in-2-minutes-using-
opencv-python-90f89d7c0f81

  


