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Abstract — In this study, we demonstrate high image 

classification performance using a Dense network with only one 

hidden layer. In this method, we systematically tuned the 

number of neurons in the hidden layer and trained our model 

on a benchmark image classification dataset. The shallow model 

was able to successfully gain state-of-the-art AlexNet level 

performance. Neural networks with extensively deep 

architectures typically contain millions of parameters, which are 

both computationally expensive and time-consuming to train. 

This study shows that going deeper into neural networks is not 

always necessary, rather it is more important to focus on the 

correct number of neurons in each layer.   
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I. INTRODUCTION 

In 2012, Krizhevsky et al. introduced AlexNet for image 
classification [1], which has an overall 660,000 neurons, 61 
million parameters, and 600 million connections. It took the 
authors 6 days to train their network two Nvidia Geforce GTX 
580 GPUs in parallel over 90 epochs. Later in 2014, VGG-16 
was introduced by Simonyan et al. [2]. It contained 
collectively 138M parameters. From later on, it has become a 
go-to trend to go design more and more complex neural 
network structures incorporating a significantly added number 
of parameters. 

The problem with going deeper is that it requires more 
sophisticated hardware, such as GPUs, which are quite 
expensive. Also, training a network for days or weeks without 
hassle is not always an applicable option. In this study, we 
tuned the number of neurons along with different activation 
functions and dropout rates having only one layer and 
attempted to gain AlexNet level accuracy. We performed 
experimentation on the Fashion-MNIST benchmark dataset 
introduced by Xiao et al. [3]. 

II. OBJETIVES 

Our main objective in this research is to find out the 
optimal neural network architectures that have as few 
parameters as possible while not compromising the 
performance. Additionally, this work also exposes the 
capability of a single hidden layer in a network. 

III. METHODOLOGY 

The Fashion-MNIST dataset contains 60,000 training and 
10,000 testings of 28-by-28 pixel grayscale images for 10 
classes [3]. The accuracy performance of AlexNet on the 
Fashion-MNIST dataset, as reported by Ma et al., is 86.43% 
[4]. Additionally, Duan et al. applied the VGG-11 network 
structure on Fashion-MNIST and achieved 91.5% accuracy 
[5]. 

The generic model structure is visualized in Fig. 1. It 
contains three layers - An input layer, one hidden layer, and 

the output layer. 28x28 pixel images are provided to the 
network via the input layer. The output layer has 10 neurons 
for 10 classes. We tuned the number of neurons in the hidden 
layer based on the number of total pixels in an image. An 
image has 28x28 (784) pixels. We started training our model 
with the number of neurons (n) equivalent to 1% on the total 
pixel, which is 7 neurons only (784x0.01). Then, we gradually 
increased neurons by taking 78 (10%), 392 (50%), and 784 
(100%) neurons. Outputs from the hidden layer were flattened 
before the output layer. 

We generally used a 50% dropout (d) for the hidden layer. 
However, in two cases, we applied 80% drop out because of 
their convincing performances to reduce overfitting. Each 
hidden unit was experimented with without any activation 
functions and with ReLU activation. In the final layer, we 
applied softmax activation as the classifier. Moreover, in all 
cases, we initialized biases with zeros and employed 
glorot_uniform as the kernel initializer. All the tasks were 
implemented with Keras Function API. 

The total number of trainable parameters were around 
54K, 611K, 3M, and 6.1M for corresponding 7, 78, 392, and 
784 neurons in the hidden layer. There were no non-trainable 
parameters. We continued training each model until there was 
50 consecutive no improvement in validation loss. 

IV. RESULTS AND DISCUSSION 

We have summarized our experimental results in Table 1. 
For 7 neurons, our model achieved 84.51% test accuracy and 
a test loss of 0.43 with 87.72% Precision and 81.19% Recall 
without activation function over 100 epochs. In contrast, the 
accuracy, loss Precision, and Recall were 83.95%, 0.46, 
88.14%, and 79.35% over 158 epochs. In case of 78 hidden 
neurons, the accuracy, loss Precision, and Recall were 
84.58%, 0.43, 87.81%, and 81.67% over 72 epochs without 
activation; and 84.60%, 0.43, 87.72%, and 81.92% over 88 
epochs, respectively. Again, the corresponding accuracy, loss 
Precision, and Recall for 392 neurons were 84.69%, 0.43, 
87.55%, and 81.90% over 65 epochs without activation, while 
86.20%, 38.86%, 88.46%, and 84.35% over 287 epochs with 
ReLU activation. Furthermore, for 784 hidden units, the 
respective accuracy, loss Precision, and Recall were 84.24%, 
0.44, 87.06%, and 81.78% over 69 epochs without activation. 
On the other hand, these results for 784 hidden units with 
ReLU activation were 86.18%, 0.39, 88.24%, and 84.30% 
over 214 epochs, correspondingly. 

Now, as the highest test accuracy (86.20%) with test 
lowest loss (0.39) in the previous models was for 392 neurons 
(with ReLU activation), we trained the models with 392 
neurons with 80% dropout for both with and without 
activation. Point to be noted that the second-best model in 
terms of test accuracy was also with 392 neurons, however, 
without activation (84.69%). 
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Fig. 1. Generic model structure. 

 

Table 1. Details and evaluation of applied models in comparison to AlexNet (accuracy 86.43%). 

# 
neurons 

Activation 
function 

Dropout # params # 
epochs 

Test 
accuracy 

Test 
loss 

Precision Recall 

7 None 0.5 54,904 100 0.8451 0.4376 0.8772 0.8119 

7 ReLU 0.5 54,904 158 0.8395 0.4626 0.8814 0.7935 

78 None 0.5 611,686 72 0.8458 0.4365 0.8781 0.8167 

78 ReLU 0.5 611,686 88 0.8460 0.4352 0.8772 0.8192 

392 None 0.5 3,074,074 65 0.8469 0.4383 0.8755 0.8190 

392 ReLU 0.5 3,074,074 287 0.8620 0.3886 0.8846 0.8435 

392 None 0.8 3,074,074 377 0.8636 0.3805 0.8877 0.8455 

392 ReLU 0.8 3,074,074 68 0.8445 0.4390 0.8755 0.8152 

784 None 0.5 6,148,138 69 0.8424 0.4443 0.8706 0.8178 

784 ReLU 0.5 6,148,138 214 0.8618 0.3884 0.8824 0.8430 

 

 

Fig. 2. Training loss versus validation loss for model with 392 neurons and 

80% dropout. 

 

Fig. 2. Training accuracy versus validation accuracy for model and 392 

neurons with 80% dropout. 
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Finally, for 392 hidden neurons with 80% dropout, the 
accuracy, loss Precision, and Recall were 86.36%, 0.38, 
88.77%, and 84.55%, respectively, over 377 epochs, without 
activation. However, with ReLU activation, the corresponding 
results were 84.45%, 0.44, 87.55%, and 81.52% over 68 
epochs. 

Overall, the best performance was for the model consisting 
of 392 hidden units with an 80% dropout without any 
activation function. The performance (86.36% test accuracy) 
was almost the same as the accuracy level of AlexNet 
(86.43%). 

V. CONCLUSION 

In this research work, we have demonstrated the powerful 
capability of the hidden neurons to learn over data. We also 
investigated the single-hidden layer model competing with 
very deep AlexNet. Nonetheless, these results should be 
further investigated intensely with other benchmark datasets. 
Also, we need to examine if this behavior is also applicable to 
images with higher dimensions. We also need to construct 
more similar types of shallow Convolutional models to 
observe the effects. Considering the proper number of neurons 

with the correct configuration, we hope that this type of 
shallow model would largely eradicate our necessity for 
heavyweight models, thus reducing the requirements of 
expensive hardware. 
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